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The  transition  from  late  adolescence  to  young  adulthood  is marked  by anatomical  matura-
tion of  various  brain  regions.  In  parallel,  defining  life  changes  take  place,  such  as  entrance
into  college.  Up  till  now  research  has not  focused  on functional  brain  differences  during
this particular  developmental  stage.  The  current  cross-sectional  fMRI  study  investigates
age  differences  in cognitive  control  by  comparing  late  adolescents,  18–19  years  old,  with
young adults,  23–25  years  old.  Seventy-four  male  and  female  medical  students  carried  out
a combined  cognitive  and emotional  Stroop  task.  Overall,  lateral  frontoparietal  and  medial
parietal  activation  was  observed  during  cognitive  interference  resolution.  Young  adults
showed  stronger  activation  in  the  dorsomedial  prefrontal  cortex,  left inferior  frontal  gyrus,
left  middle  temporal  gyrus  and  middle  cingulate,  compared  to late adolescents.  During
nterference resolution
motion

emotional  interference  resolution,  the  left  precentral  and  postcentral  gyrus  were  involved
across age  and  sex.  The  dorsomedial  prefrontal  cortex  and  precuneus  were  activated  more  in
young  adults  than  in late  adolescents.  No  sex-related  differences  were  found  in  this homo-
geneous  sample.  The  results  suggest  that  the  neural  bases  of  cognitive  control  continue  to
change  between  late adolescence  and  young  adulthood.
. Introduction

The life period between the ages 18 and 25 is a time
n which important changes take place, such as obtain-
ng a college degree, leaving home, establishing new social
elations and reaching financial independence. This phase
as been referred to as emerging adulthood (Arnett, 2000)
nd is characteristic for industrialized societies, where
oung people have prolonged educational tracks to qual-

fy for highly technical jobs. During this period, structural

aturation of the brain and cortical networks is ongoing
Lebel and Beaulieu, 2011; Tamnes et al., 2010), which
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has been linked to environmental transitions (Bennett and
Baird, 2006). Particularly areas within the prefrontal cor-
tex that are important for cognitive control, the ability
to direct behavior towards a goal, continue to develop
until the early 20s (Giedd and Rapoport, 2010; Toga et al.,
2006). These high-order association areas, including the
lateral and medial prefrontal cortex as well as the cin-
gulate cortex, reach their peak in cortical thickness last
(Shaw et al., 2008). Another region that matures late, as
indicated by gray matter loss, is the lateral temporal lobe
(Gogtay et al., 2004). Anatomical trajectories are likely
linked to functional development of cognitive processes
in the adolescent brain (Blakemore and Choudhury, 2006;
Casey et al., 2005; Crone and Ridderinkhof, 2011; Steinberg,
2005). It has been shown that neural correlates of control

mature at least until age 18 (Bunge and Wright, 2007; Luna
et al., 2010; Rubia et al., 2006; Velanova et al., 2009). How-
ever, little is known about changes in brain mechanisms
underlying cognitive control during the transition from late
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adolescence to young adulthood, around the ages of 18
until 25.

An important aspect of cognitive control is interference
resolution, inhibition of an automatic response in favor of a
voluntary response, and can be measured using the Stroop
task (MacLeod, 1991; Nee et al., 2007). There is some evi-
dence from functional magnetic resonance imaging (fMRI)
studies that the neural underpinnings of the Stroop task
develop further after age 18. In 7–22 year olds, there was
a positive correlation between age and activation during
interference in the left lateral and medial prefrontal cortex
as well as left lateral and medial parietal cortex (Adleman
et al., 2002). According to this research, the functional role
of the parietal lobe develops until age 12 while frontal
involvement changes until age 18 or beyond. On another
Stroop paradigm activation of the left lateral prefrontal cor-
tex seemed to increase from age 14 until around age 21 and
slightly decrease from age 21 until age 25 (Andrews-Hanna
et al., 2011). Increased activation of the right lateral pre-
frontal cortex with age and with performance was found in
participants 7–57 years old (Marsh et al., 2006). Although
these studies use a wide age range, the findings indicate
that maturation of neural processes related to interference
resolution on the Stroop task might extend into adulthood.

Differences in brain activation between adolescents and
adults have also been observed during cognitive control
over interfering emotional stimuli (Crone, 2009; Monk
et al., 2003; Passarotti et al., 2009; Wang et al., 2008). Cogni-
tive and emotional interference resolution engaged similar
prefrontal control regions in adolescents aged 16 and 17
performing a variant of the counting Stroop task (Mincic,
2010). No information is available with respect to develop-
mental patterns, as the adolescents were not compared to
adults and no other neuroimaging studies have examined
development using an emotional Stroop paradigm. During
adolescence, cognitive control is particularly difficult in the
context of emotional stimuli (Casey et al., 2011), therefore
it can be expected that age-related differences are espe-
cially pronounced on an emotional variant of the Stroop
task.

The lack of knowledge concerning functional brain mat-
uration during the transition from late adolescence to
young adulthood has motivated the current fMRI study.
Here, differences between 18–19 year olds and 23–25 year
olds are investigated on a combined cognitive and emo-
tional Stroop task. The 18–19 year olds are Freshman and
Sophomore students in Medical College while the 23–25
year olds are medical students at the Junior or Master level.
A homogeneous sample of medical students was chosen to
control for possible variation due to differences in intelli-
gence, life experiences and daily activities. Compared to
the students in the first years, the students in the final
years have already completed courses and practical classes
and are involved in clinical training. Students 18–19 years
old and students 23–25 years old are termed late adoles-
cents and young adults respectively since it is proposed
that between these ages, development towards a com-

plete adult-like pattern of brain functioning occurs. This
notion contrasts with the common assumption that peo-
ple of 18 and older are adults. Instead, we focus on changes
within this age range, which can be considered a separate
tive Neuroscience 5 (2013) 63– 70

developmental stage. We  predict stronger activation in
young adults compared to late adolescents, particularly in
the prefrontal cortex, during interference resolution. The
effect is assumed to be larger during emotional compared
to cognitive interference resolution.

An additional question pertains to possible differences
between male and female students. It has been demon-
strated that the neural bases of cognitive tasks might differ
for males and females (Bell et al., 2006). An interaction
effect between age and sex was found in 13–38 year olds
performing a motor Stroop task (Christakou et al., 2009).
In this study, increased activation with age in medial pre-
frontal areas was shown for females, while for males a
positive correlation between age and activation of tem-
poral regions was observed. Additionally, brain activation
related to emotional interference can vary between males
and females (Koch et al., 2007). To further explore sex-
related activation differences on the combined cognitive
and emotional Stroop task, in addition to age differences,
we include male as well as female late adolescents and
young adults.

2. Methods

2.1. Participants and procedure

A total of 74 healthy right-handed volunteers were
included in this study. Participants consisted of 21
female late adolescents (range = 18.39–19.98 years,
mean = 19.11, SD = 0.44), 17 male late adolescents
(range = 18.36–19.91 years, mean = 18.92, SD = 0.53),
18 female young adults (range = 23.24–24.95 years,
mean = 24.07, SD = 0.46) and 18 male young adults
(range = 23.05–25.95 years, mean = 24.03, SD = 0.89). They
were recruited from Medical College at VU University
Amsterdam and the University of Amsterdam. Written
informed consent was  obtained prior to the study and par-
ticipants received monetary compensation. The study was
approved by the Medical Ethics Committee of VU Medical
Centre.

All volunteers were right-handed, had normal or
corrected-to-normal vision and no history of neurologi-
cal or psychiatric disorders. Mean estimation of receptive
vocabulary, an aspect of verbal IQ, was  110.3 (SD = 6.71)
on the Peabody Picture Vocabulary Test-III-NL, within
the normal range for adults holding a university degree
(mean = 112.0, SD = 9.00; Schlichting, 2005). There was
no significant difference between scores of the four
groups: female late adolescents, male late adolescents,
female young adults and male young adults (F = 1.02,
p = 0.39).

The volunteers completed a behavioral session of 1.5 h
and an fMRI session of 1 h. During the behavioral session
which took place 1 or 2 days before the fMRI session, the
fMRI tasks were practiced. In addition, a neuropsychologi-
cal test battery was  administered. During the fMRI session,

participants performed a combined cognitive and emo-
tional Stroop task. A social appraisal task and a Go/NoGo
paradigm were also performed and will be described else-
where.
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.2. Experimental paradigm

A combined cognitive and emotional Stroop task was
arried out in the fMRI scanner (see Fig. 1; Evers et al.,
006). Words printed in four different colors were pre-
ented on a back-projection screen that could be seen
hrough a tilted mirror attached to the head coil. Partici-
ants indicated the color of the ink by button press with
he left middle finger used for blue, left index finger for
ed, the right index finger for green and right middle fin-
er for yellow. In the behavioral session and in the fMRI
ession, participants practiced the task to learn the cor-
espondence between stimuli and responses. In case they
orgot which buttons to use, they could look at the bottom
f the screen where the order of colors was written in white
etters.

The task consisted of two runs, each containing 40 con-
ruent color words (e.g. the word red printed in red ink),
0 incongruent color words (e.g. the word blue printed in
ed), 24 positive emotional words (e.g. friend), 24 negative
motional words (e.g. boring) and 24 neutral words (e.g.
ouse). At the beginning of the task, an instruction screen
as presented for 6 s. The participants were instructed

o respond accurate and as fast as possible to the color
f the ink. Incongruent words were expected to induce
ognitive interference while the congruent words were
xpected to result in facilitation (MacLeod, 1991; MacLeod
nd MacDonald, 2000). The negative emotional words were
ncluded to induce emotional interference (Frings et al.,
010). Positive words should result in less emotional inter-
erence, because of the absence of threat (McKenna and
harma, 1995). The neutral words formed the baseline con-
ition.

Words were presented in a semi-randomized order with
ever the same color three times in a row and each color
qually often in every condition. Every 2 s a word was
hown on a black screen. The word stayed on the screen
ntil a response was given with a maximum duration of

 s. After a response, a blank black screen was shown until
he next word appeared. Two runs of the task were coun-
erbalanced across participants. These were preceded by a
ractice run of 40 neutral words. In the training session 1
r 2 days earlier, two Stroop blocks were performed with
0 congruent words, 40 incongruent words and 72 neutral
ords. The goal of the practice procedure was to famil-

arize the participants with the task and the color-button
orrespondence.

.3. Data acquisition

Images were acquired on a General Electric 3 T head-
nly MRI  scanner in ascending order. A T2*-weighted
cho planar imaging (EPI) sequence was used with the
ollowing parameters: time to repetition (TR) = 2000 ms,
ime to echo (TE) = 35 ms,  flip angle (FA) = 80◦, field of
iew (FOV) = 22 cm × 22 cm,  number of slices = 35, voxel

ize = 3.5 mm × 3.5 mm × 3 mm.  A T1-weighted anatomi-
al scan was acquired to aid with spatial normalization
TR = 7.876 ms,  TE = 3.06 ms,  FA = 12◦, FOV = 22 cm × 22 cm,
umber of slices = 166, voxel size = 1 mm × 1 mm × 1 mm).
tive Neuroscience 5 (2013) 63– 70 65

2.4. Behavioral data analysis

Reaction times and response errors were recorded.
To compare reaction times of the conditions Congruent,
Incongruent, Positive and Negative to the baseline condi-
tion Neutral, four paired samples t-tests were performed
(p < 0.01, Bonferroni corrected for multiple comparisons).
Cognitive interference time was assessed for each partici-
pant by calculating the difference in reaction time between
the condition Incongruent and the condition Neutral. Emo-
tional interference time was calculated by subtracting the
reaction time of the condition Neutral from the reaction
time of the condition Negative. The effects of Age and
Sex on cognitive interference time (Incongruent–Neutral)
and emotional interference time (Negative–Neutral) were
examined using independent samples t-tests (p < 0.01, Bon-
ferroni corrected for multiple comparisons).

For error percentages, paired samples t-tests were
conducted (p < 0.01, Bonferroni corrected for multiple
comparisons) to compare the conditions Congruent, Incon-
gruent, Positive and Negative to the baseline condition
Neutral. Cognitive interference error rate was defined
for each participant as the difference in error percent-
age between the condition Incongruent and the condition
Neutral. The difference in error percentage between the
condition Negative and the condition Neutral consti-
tutes the emotional interference error rate. Independent
samples t-tests (p < 0.01, Bonferroni corrected for mul-
tiple comparisons) were employed to determine effects
of Age and Sex on cognitive interference error rate
(Incongruent–Neutral) and emotional interference error
rate (Negative–Neutral).

2.5. fMRI data analysis

Statistical Parametric Mapping (SPM8, www.fil.ion.
ucl.ac.uk/spm) was  used to analyze the fMRI data. Prepro-
cessing steps included realignment of the images with a
six-parameter rigid body transformation to correct for head
movement. Next, functional images of each participant
were coregistered to the structural image and normalized
to the MNI  template. Spatial smoothing was performed
with a 7-mm full width at half maximum (FWHM) isotropic
Gaussian kernel.

At the first level, a General Linear Model (GLM) was
specified with the onsets of every condition. The events
with a fixed duration of 0 were convolved with a hemody-
namic response function. High-pass filtering was used to
remove low-frequency noise and motion parameters were
included as regressors of no interest. For each participant,
the conditions Congruent, Incongruent, Positive and Neg-
ative were contrasted with the baseline condition Neutral.
Individual contrast images were entered into second-level
analyses.

To confirm previous findings on brain activation during
the Stroop task, simple effects of the conditions Congru-
ent, Incongruent, Positive and Negative were calculated.

These simple effect analyses were conducted on the entire
sample of 74 participants, thus including all four groups.
Results were thresholded at p < 0.05, Family Wise Error
(FWE) rate corrected. t-Tests were conducted for the

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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Figure 1. The combined cognitive and emotional Stroop task. Colored w
participant was to press a button corresponding to the color of the ink. A
word, neutral word and negative emotional word are illustrated. Congrue

conditions Incongruent and Negative (versus the base-
line Neutral) to test for the effect of Age (late adolescent,
young adult) and the effect of Sex (male, female) dur-
ing cognitive and emotional interference resolution. A
threshold of p < 0.005 uncorrected for height was  applied
and corrected for magnitude with a cluster size k = 58
derived from a Monte–Carlo simulation (3dClustSim in
AFNI, http://afni.nimh.nih.gov/afni), equivalent to a thresh-
old of p < 0.05, FWE  corrected.

3. Results

3.1. Behavioral results

Mean reaction times and error rates for all conditions
are shown in Table 1. Reaction times in the condition
Congruent were shorter than in the condition Neutral
(t(73) = −6.39, p < 0.001), indicative of facilitation. The reac-
tion times in the condition Positive were not significantly
different from reaction times in the condition Neutral
(t(73) = 0.41, p = 0.68). Cognitive and emotional interfer-
ence occurred on this Stroop task, as demonstrated by
longer reaction times in the condition Incongruent as
well as the condition Negative compared to the condition
Neutral (t(73) = 12.87, p < 0.001 and t(73) = 5.63, p < 0.001,
respectively). There were no effects of sex on cognitive
interference time (t(72) = 0.72, p = 0.48) or emotional inter-
ference time (t(72) = 0.01, p = 0.99). There was no effect of
age on cognitive interference time (t(72) = 0.20, p = 0.85)
and a trend towards larger emotional interference times

in late adolescents compared to young adults (t(72) = 2.23,
p = 0.03).

A trend was detected towards a smaller error percent-
age in the condition Congruent compared to the condition

Table 1
Mean reaction times (ms) and error rates (%), including standard
deviations.

Reaction times Error rates

Incongruent 759.48 (152.58) 12.64 (11.83)
Congruent 627.41 (98.36) 4.90 (4.52)
Negative 679.09 (115.91) 11.82 (6.43)
Positive 657.71 (107.80) 6.64 (6.50)
Neutral 656.44 (109.06) 6.42 (6.02)
Cognitive interference

(Incongruent–Neutral) 103.04 (68.86) 6.22 (9.91)
Emotional interference

(Negative–Neutral) 22.65 (34.60) 5.40 (6.16)
ere presented on the screen with a fixed interval of 2 s. The task of the
creen was shown after a response. In this example, an incongruent color

 words and positive emotional words were also included.

Neutral (t(73) = −2.12, p = 0.04). Error percentages in the
conditions Positive and Neutral did not significantly differ
from each other (t(73) = 0.27, p = 0.79). The error percent-
ages in the conditions Incongruent and Negative were
larger than in the condition Neutral (t(73) = 5.40, p < 0.001
and t(73) = 7.55, p < 0.001, respectively). No effects of age
(t(72) = 0.03, p = 0.98) and sex (t(72) = −0.66, p = 0.51) on
cognitive interference error rate were present. There
were also no effects of age (t(72) = 0.42, p = 0.67) and
sex (t(72) = 0.06, p = 0.95) on emotional interference error
rate.

3.2. fMRI results

3.2.1. Condition effects
To determine which brain areas were involved in per-

forming the Stroop task, simple effects of the conditions
Congruent, Incongruent, Positive and Negative were tested
across age and sex, thus grouping all participants together.
No significant results were found for the conditions
Congruent and Positive (compared to the baseline
Neutral). During cognitive interference resolution
(Incongruent–Neutral), activation was observed in the left
inferior parietal gyrus extending into the precuneus, the
left inferior frontal gyrus extending into the left precentral
gyrus, right inferior parietal gyrus, right precentral gyrus
as well as right inferior frontal gyrus and right middle
frontal gyrus. Additional small clusters were shown in the
left supplementary motor area and bilateral insula. During
emotional interference resolution (Negative–Neutral),
activation was found in the left precentral gyrus extend-
ing into left postcentral gyrus, the cerebellum and a
small cluster in left supplementary motor area (see
Table 2).

3.2.2. Age effects
There was no effect of sex during cognitive and

emotional interference resolution. In both conditions, an
effect of age was  shown with young adults display-
ing more activation than late adolescents, as illustrated
in Fig. 2. During the condition Incongruent (versus the
baseline Neutral), young adults activated the following
regions more than late adolescents: the dorsomedial pre-

frontal cortex (MNI = −14 28 42, Z = 4.14), the left middle
temporal gyrus (MNI = −63 −39 −6, Z = 3.71), the left infe-
rior frontal gyrus (MNI = −39 18 −15, Z = 3.59) and middle
cingulate (MNI = −4 −21 48, Z = 3.41). Thus, involvement

http://afni.nimh.nih.gov/afni
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Table 2
Areas in which condition effects were observed (p < 0.05, FWE-corrected).

MNI  coordinates

Peak of activation x y z Z-value Cluster size

Cognitive interference (Incongruent–Neutral)
Left inferior parietal gyrus −28 −70 42 7.80 607
Left  inferior parietal gyrus −35 −53 42 7.48 Part of the same cluster
Precuneus −7 −74 48 6.83 Part of the same cluster
Left  inferior frontal gyrus −42 25 30 6.86 274
Left  precentral gyrus −53 11 39 6.14 Part of the same cluster
Left  precentral gyrus −42 −4 60 4.82 8
Left  precentral gyrus −32 −4 69 4.59 Part of the same cluster
Left  precentral gyrus −35 −18 69 4.76 5
Right inferior parietal gyrus 35 −56 45 6.21 122
Right inferior parietal gyrus 32 −67 42 5.79 Part of the same cluster
Right precentral gyrus 42 7 30 5.70 170
Right inferior frontal gyrus 46 25 30 5.45 Part of the same cluster
Right middle frontal gyrus 46 32 39 5.45 Part of the same cluster
Right middle frontal gyrus 39 4 57 4.66 6
Left  supplementary motor area −4 11 57 5.09 13
Right insula 32 25 3 4.93 11
Left  insula −35 18 0 4.84 9

Emotional interference (Negative–Neutral)
Left precentral gyrus −39 −21 66 9.33 325
Left  postcentral gyrus −35 −25 54 8.96 Part of the same cluster
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Cerebellum 21 −56 

Cerebellum 7 −67 

Left  supplementary motor area −7 −14 

f these regions during cognitive interference resolution
ncreases with age. During the condition Negative (versus
he baseline Neutral), young adults demonstrated more
ctivation than late adolescents in the dorsomedial pre-
rontal cortex (MNI = −18 28 42, Z = 3.71) and the precuneus
MNI = −18 −60 24, Z = 3.53). Engagement of these areas
uring emotional interference resolution is thus stronger

n 23–25 year olds than in 18–19 year olds.

. Discussion

The current study revealed differences in brain acti-
ation between late adolescents (18–19 years old) and
oung adults (23–25 years old) during cognitive control.
ur results indicate protracted functional development of

he cortex into the 20s. This is in accordance with findings

n anatomical maturation of the brain (Yurgelun-Todd,
007) and environmental changes that take place dur-

ng this transitional period (Casey et al., 2010). Although
imilar behavioral performance on the Stroop task is

ig. 2. Brain regions that were activated more in young adults compared to late ad
he  dorsomedial prefrontal cortex, left inferior frontal gyrus, the left middle tempo
nterference were found in the dorsomedial prefrontal cortex and precuneus.
−27 5.61 37
−24 4.57 Part of the same cluster

57 5.31 13

observed in participants aged 18 and older, underlying
neural correlates differ. This was  shown here by stronger
engagement of several brain regions in young adults com-
pared to late adolescents for cognitive as well as emotional
interference resolution.

Across all participants, bilateral and medial parietal
cortex as well as bilateral frontal cortex, including the pre-
central gyrus and the left supplementary motor area, was
activated during cognitive interference resolution. This is
consistent with previous research demonstrating fronto-
parietal engagement on the Stroop task (Compton et al.,
2003; Egner and Hirsch, 2005). During emotional interfer-
ence resolution, activation of the left precentral and left
postcentral gyrus, the cerebellum and left supplementary
motor area was observed. Engagement of the left postcen-
tral gyrus was reported earlier with the same paradigm

(Evers et al., 2006). We  did not observe activation of the
anterior cingulate cortex, which has been found on the cog-
nitive (Carter et al., 2000; Laird et al., 2005; Mayer et al.,
2012; Nee et al., 2007) and emotional Stroop task (Etkin

olescents. (A) During cognitive interference, an effect of age was found in
ral gyrus and middle cingulate. (B) Age-related differences for emotional
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et al., 2006; Haas et al., 2006). However, lesion studies sug-
gest that this region is not necessary for cognitive control
(Fellows and Farah, 2005; Mansouri et al., 2009).

Age differences were shown in left lateral and medial
prefrontal cortex during cognitive interference resolution,
extending the findings of Adleman et al. (2002) in 7–22
year olds. Another study implied a pattern of increasing left
prefrontal activation until age 21 and decreasing activation
thereafter (Andrews-Hanna et al., 2011). This was revealed
in post hoc tests while the main analyses compared ado-
lescents aged 14–17 with adults aged 18–25. The current
results indicate that when focusing on the narrow age range
from 18–25, prefrontal activation appears to increase with
age. The 23–25 year olds also engaged the middle cingu-
late and left middle temporal gyrus more than 18–19 year
olds did. For emotional interference resolution, an effect
of age was found in the dorsomedial prefrontal cortex and
in the precuneus. Previous research has demonstrated that
the dorsomedial prefrontal cortex plays a role in processing
negative emotional words on the Stroop task (Compton
et al., 2003). Involvement of the cuneus, a region posterior
to the precuneus, has also been reported (Mincic, 2010).
It has been proposed that during adolescence, cognitive
control is particularly difficult for emotional stimuli (Casey
et al., 2011; Steinberg, 2005). Nonetheless, we observed dif-
ferences between late adolescents and young adults during
emotional as well as cognitive interference resolution, yet
in different regions of the brain. It therefore seems that cog-
nitive control over both types of stimuli develops further
after the age of 18.

From late adolescence to young adulthood, increased
activation in prefrontal cortex and other areas was found.
A recent review reported age-related increases as well as
decreases in prefrontal activation during cognitive control
(Crone and Dahl, 2012). These authors concluded that the
variability in prefrontal recruitment demonstrates flexibil-
ity of this brain region in adolescence, which is related to
the context, such as motivation for a certain task. Unfor-
tunately, it is difficult to relate the current findings to
task-related behavior, since differences in brain activation
were not accompanied by differences in reaction times
or accuracy. There was a trend visible towards less emo-
tional interference in 23–25 year olds than in 18–19 year
olds, suggesting improved performance in young adults. In
this age range, developmental effects might be too small
to reach significance at the behavioral level, although the
effects can still be observed at the neural level.

The differences between late adolescents and young
adults are probably due to an interaction between biologi-
cal effects of age and environmental influences. Our sample
consists of 18–19 year old Freshman and Sophomore stu-
dents and 23–25 year old Junior and Master students in
Medical College. The 23–25 year olds are in the final years
of the curriculum and have had more experience with sit-
uations in which cognitive control is required compared to
the 18–19 year olds. During the college years, students may
improve their cognitive control skills which are needed

for planning, avoiding distractions and focusing on exams.
Changes over time may  thus be related to the educational
setting rather than being solely age-specific. In order to
distinguish between environmental and biological factors,
tive Neuroscience 5 (2013) 63– 70

future studies might benefit from concurrently investigat-
ing functional and structural development in this age range.

We used a homogeneous group consisting of students
in Medical College only to exclude possible confounding
factors, such as differences in IQ, habits and lifestyle. Med-
ical students have an intensive curriculum which requires
them to spend much time in class or doing practical work.
This makes their daily routines similar to one another and
different from those of other students who  have more free-
dom in planning their study behavior. Additionally, medical
students share characteristics with respect to learning
motivation, intellectual capacity and past education involv-
ing beta-disciplines. Including a homogeneous sample
increases the possibility of finding age effects, which are
small compared to the overall task effects. Age-related dif-
ferences were indeed detected in the participants of this
study. At this moment, our results are only valid for the
population of medical students. The conclusions are limited
to a group of intelligent young people who  are known
to have a specific trajectory of cortical maturation (Shaw
et al., 2006). Future research could provide more insight
into development during the transition from late adoles-
cence to young adulthood by testing participants between
18 and 25 years old who are pursuing a different degree or
have a full-time job. Another suggestion would be to follow
people longitudinally in order to reduce between-subject
variation.

With respect to possible sex-related activation differ-
ences, none were observed for cognitive and emotional
interference resolution. This is a relevant finding as previ-
ously, differences between males and females were found
on a Go/NoGo task (Garavan et al., 2006), a Stop-signal
task (Li et al., 2009) and a motor Stroop task (Christakou
et al., 2009). These studies, however, did not control for
confounding variables in the same way  as was  done here.
The reported sex differences may  be due to the fact that
the participant groups had a more heterogeneous compo-
sition and males and females differed on several aspects,
such as education. Alternatively, the presence or absence
of sex differences might depend on the specific paradigm
used (Bell et al., 2006). The current fMRI results indicate
that in 18–25 year old medical students, there is an effect
of age on a combined cognitive and emotional Stroop task,
independent of sex. This implies that from late adolescence
to young adulthood, concurrent with biological maturation
and social transitions, functional changes in the brain are
ongoing.
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